Host Competence and Helicase Activity Differences Exhibited by West Nile Viral Variants Expressing NS3-249 Amino Acid Polymorphisms
نویسندگان
چکیده
A single helicase amino acid substitution, NS3-T249P, has been shown to increase viremia magnitude/mortality in American crows (AMCRs) following West Nile virus (WNV) infection. Lineage/intra-lineage geographic variants exhibit consistent amino acid polymorphisms at this locus; however, the majority of WNV isolates associated with recent outbreaks reported worldwide have a proline at the NS3-249 residue. In order to evaluate the impact of NS3-249 variants on avian and mammalian virulence, multiple amino acid substitutions were engineered into a WNV infectious cDNA (NY99; NS3-249P) and the resulting viruses inoculated into AMCRs, house sparrows (HOSPs) and mice. Differential viremia profiles were observed between mutant viruses in the two bird species; however, the NS3-249P virus produced the highest mean peak viral loads in both avian models. In contrast, this avian modulating virulence determinant had no effect on LD50 or the neurovirulence phenotype in the murine model. Recombinant helicase proteins demonstrated variable helicase and ATPase activities; however, differences did not correlate with avian or murine viremia phenotypes. These in vitro and in vivo data indicate that avian-specific phenotypes are modulated by critical viral-host protein interactions involving the NS3-249 residue that directly influence transmission efficiency and therefore the magnitude of WNV epizootics in nature.
منابع مشابه
West Nile Virus Temperature Sensitivity and Avian Virulence Are Modulated by NS1-2B Polymorphisms
West Nile virus (WNV) replicates in a wide variety of avian species, which serve as reservoir and amplification hosts. WNV strains isolated in North America, such as the prototype strain NY99, elicit a highly pathogenic response in certain avian species, notably American crows (AMCRs; Corvus brachyrhynchos). In contrast, a closely related strain, KN3829, isolated in Kenya, exhibits a low viremi...
متن کاملHelicase Domain of West Nile Virus NS3 Protein Plays a Role in Inhibition of Type I Interferon Signalling
West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in...
متن کاملThe two-component NS2B-NS3 proteinase represses DNA unwinding activity of the West Nile virus NS3 helicase.
Similar to many flavivirus types including Dengue and yellow fever viruses, the nonstructural NS3 multifunctional protein of West Nile virus (WNV) with an N-terminal serine proteinase domain and an RNA triphosphatase, an NTPase domain, and an RNA helicase in the C-terminal domain is implicated in both polyprotein processing and RNA replication and is therefore a promising drug target. To exhibi...
متن کاملEvaluation of the pathogenicity of West Nile virus (WNV) lineage 2 strains in a SPF chicken model of infection: NS3-249Pro mutation is neither sufficient nor necessary for conferring virulence
Lineage 2 West Nile virus (WNV) strains were reported for the first time in Europe in 2004. Despite an almost silent circulation around their entry point in Hungary, an upsurge of pathogenicity occurred in 2010 as 262 people suffered from neuroinvasive disease in Greece. This increase in virulence was imputed to the emergence of a His249Pro mutation in the viral NS3 helicase, as previously evid...
متن کاملCloning and expression of NS3 helicase fragment of hepatitis C virus and the study of its immunoreactivity in HCV infected patients
Objective(s): Hepatitis C is a major cause of liver failure worldwide. Current therapies applied for this disease are not fully effective and produce side effects in most cases. Non-structural protein 3 helicase (NS3) of HCV is one of the key enzymes in viral replication and infection. Therefore, this region is a promising target to design new drugs and therapies against HCV infection. The aim ...
متن کامل